Thermodynamics focuses on state functions: P, V, M, S, \ldots

Nature often gives us response functions (derivatives):

$$
\alpha \equiv \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_P \quad \kappa_T \equiv -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_T \quad \kappa_S \equiv -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_{\text{adiabatic}}
$$

$$
\chi_T \equiv \left(\frac{\partial M}{\partial H} \right)_T
$$
Example Non-ideal gas

Given

- Gas → ideal gas for large T & V

$$\left(\frac{\partial P}{\partial T}\right)_V = \frac{Nk}{V - Nb}$$

$$\left(\frac{\partial P}{\partial V}\right)_T = -\frac{NkT}{(V - Nb)^2} + \frac{2aN^2}{V^3}$$

Find P
\[dP = \left(\frac{\partial P}{\partial V} \right)_T \, dV + \left(\frac{\partial P}{\partial T} \right)_V \, dT \]

\[P = \int \left(\frac{\partial P}{\partial T} \right)_V \, dT + f(V) = \int \left(\frac{Nk}{V - Nb} \right) \, dT + f(V) \]

\[= \frac{NkT}{(V - Nb)} + f(V) \]
\[
\left(\frac{\partial P}{\partial V} \right)_T = -\frac{NkT}{(V - Nb)^2} + f'(V) = -\frac{NkT}{(V - Nb)^2} + \frac{2aN^2}{V^3}
\]

\[
f(V) = \int \frac{2aN^2}{V^3} \, dV = -\frac{aN^2}{V^2} + c
\]

\[
P = \frac{NkT}{(V - Nb)} - \frac{aN^2}{V^2} + c
\]

but \(c = 0 \) since \(P \to NkT/V \) as \(V \to \infty \)
Internal Energy U

Observational fact

Final state is independent of how ΔW is applied. Final state is independent of which adiabatic path is followed.

8.044 L11B5
⇒ a state function U such that

$$\Delta U = \Delta W_{\text{adiabatic}}$$

$U = U$(independent variables)

$=$ $U(T, V)$ or $U(T, P)$ or $U(P, V)$ for a simple fluid
Heat

If the path is not adiabatic, \(dU \neq dW \)

\[\delta Q \equiv dU - dW \]

\(\delta Q \) is the heat added to the system.

It has all the properties expected of heat.
First Law of Thermodynamics

\[dU = \delta Q + \delta W \]

- \(U \) is a state function
- Heat is a flow of energy
- Energy is conserved
Ordering of temperatures

When $\dot{W} = 0$, heat flows from high T to low T.
Example Hydrostatic System: gas, liquid or simple solid

Variables (with \(N \) fixed): \(P, V, T, U \).
Only 2 are independent.

\[
C_V \equiv \left(\frac{\Delta Q}{dT} \right)_V \quad C_P \equiv \left(\frac{\Delta Q}{dT} \right)_P
\]

Examine these heat capacities.
\[dU = dQ + dW = dQ - PdV \]

\[dQ = dU + PdV \]

We want \(\frac{d}{dT} \). We have \(dV \).

\[dU = \left(\frac{\partial U}{\partial T}\right)_V dT + \left(\frac{\partial U}{\partial V}\right)_T dV \]
\[\dot{Q} = \left(\frac{\partial U}{\partial T} \right)_V \, dT + \left(\left(\frac{\partial U}{\partial V} \right)_T + P \right) \, dV \]

\[\Rightarrow \frac{\dot{Q}}{dT} = \left(\frac{\partial U}{\partial T} \right)_V + \left(\left(\frac{\partial U}{\partial V} \right)_T + P \right) \frac{dV}{dT} \]

\[C_V \equiv \left(\frac{\dot{Q}}{dT} \right)_V = \left(\frac{\partial U}{\partial T} \right)_V \]
\[C_P \equiv \left(\frac{dQ}{dT} \right)_P = \left(\frac{\partial U}{\partial T} \right)_V + \left(\frac{\partial U}{\partial V} \right)_T + P \left(\frac{\partial V}{\partial T} \right)_P \]

\[C_P - C_V = \left(\frac{\partial U}{\partial V} \right)_T + P \alpha V \]

The 2nd law will allow us to simplify this further.

Note that \(C_P \neq \left(\frac{\partial U}{\partial T} \right)_P \).